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Abstract
Non-crystalline solids often emerge from melts with at least three atomic
constituents. The study of packing aspects of melts that form glasses or
quasi-crystals by investigating effective interactions in multi-component hard-
sphere liquids is made possible by the geometrically based fundamental-
measure density functional theory. It provides analytical approximations for
the partial structure factors of the general m-component hard-sphere mixture
(e.g. the Percus–Yevick approximation), and an accurate solution of the inverse
scattering problem for obtaining the effective interactions. The fundamental-
measure theory also enables one to extend such studies to more general (soft)
interactions.

1. Introduction

Multi-component hard-sphere mixtures [1] serve as important reference systems in condensed
matter [2], and are relevant for understanding the behaviour of polydisperse systems of practical
interest, colloidal systems for example [3]. Recent studies of local size segregation and size
selectivity for adsorption near a wall [4], inside spherical pores [5], and in narrow pores
like ionic channels [6] have been carried out by employing the fundamental-measure density
functional for multi-component hard-sphere mixtures [7]. The fundamental-measure density
functional theory was also widely employed in studies of the depletion interactions in binary
mixtures [8, 9], and was used to investigate the depletion interaction between two infinite
planes and between two large spheres due to polydisperse mixtures of interacting small hard
spheres [10].

* It is a great pleasure to contribute this paper to the issue in honour of Jean-Pierre Hansen. Like many others, I have
benefitted from Jean-Pierre’s wisdom and his famous ‘nose’ for research directions. But above all, he is a true friend.
1 We are saddened by the death of Yasha Rosenfeld on 27 July 2002. Yasha died from lung cancer at the age of 54.
He was a leading figure in theories of liquids and his fundamental measure approach to classical density functional
theory has been one of the most significant contributions to the subject during the last decade.
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Non-crystalline solids often emerge from melts with at least three atomic constituents,
and in a recent work [11] (which was limited, however, by its methodology to the study of only
the three-component mixture) it was pointed out that the study of packing aspects of melts
that form glasses or quasi-crystals can be carried out by investigating effective interactions in
multi-component hard-sphere liquids. The effective interaction between particles of species i

is obtained by reinterpreting the diagonal partial structure factor, Sii(k), as an effective
one-component structure factor for this effective (state-dependent) potential φeff (r) [11],
Sii(k) = Seff (k). This effective interaction represents a special case of the depletion potentials
which appear in the literature on liquid mixtures and colloidal suspensions [8]. In order to
obtain this effective potential φeff (r) from the given structure factor Seff (k), one needs to
solve the classical inverse scattering problem. Many practical glasses are formed from melts
that contain significant numbers of constituent elements (certainly more than three), and the
investigations of packing aspects of melts that form glasses or quasi-crystals, as initiated for the
three-component mixture [11], should be extended to more general mixtures. In accordance
with trends presented in [11] for the ternary case, another depletion interaction study finds [10]
that polydispersity has relatively little effect on the depletion attraction, but has considerable
effect on the repulsive barrier and on the damping of subsequent oscillations. Indeed, a
higher number of components, with variable relative concentrations and relative sizes, can
lead to effective potentials with peculiar features (some of which appear already in the ternary
case [11]), which inhibit the formation of a crystalline arrangement from the melt. The choice
of parameters for study can perhaps be guided by recent experiments such as those on the
effects of adding Si to quasi-crystal-forming Al–Cu–Fe alloys [13].

However, these studies require the availability of accurate partial structure factors for the
relevant multi-component hard-sphere mixtures, and of an accurate method for solving the
inverse scattering problem. The initial study [11] was limited to the ternary case. It was
based on the structure factors obtained from the analytic solution of the Percus–Yevick (PY)
integral equation for the three-component mixture by the Laplace transform method [1], which
was presented as a major undertaking for obtaining a primary result upon which rested the
foundation of that entire study. Furthermore, it employed the hypernetted-chain and PY
closures for the inversion problem, while a significant improvement of these called [11]
for an iterative method [14] involving simulations at each stage, which is impractical for
the studies proposed above. On the other hand, it will be shown below how a general
investigation for the multi-component hard-sphere mixtures is actually made possible by the
geometrically based fundamental-measure density functional theory, which also provides a
uniquely effective method for such studies: a brief review is presented here of how it provides
analytical approximations for the partial structure factors of the general m-component hard-
sphere mixture (e.g. the PY approximation [1, 12]), and how it yields an accurate efficient
solution of the inverse scattering problem for obtaining the effective interactions.

Investigations of packing aspects of melts that form glasses or quasi-crystals are readily
possible for arbitrary mixtures, by using the complete analytical expressions for the PY
direct correlation functions of the general m-component hard-sphere mixture as obtained
within the fundamental-measure theory [7]. In fact, three different but completely equivalent
analytical expressions for the PY direct correlation functions will be presented. It will first
be outlined how the PY direct correlation functions for an arbitrary hard-sphere mixture are
obtained analytically in a very simple and physically transparent way by using the scaled-
field-particle theory [15]. Specifically, it will be shown (section 2) how it becomes possible
to obtain the solution of the PY equation for arbitrary mixtures given only the corresponding
‘compressibility’ equation of state given in [1]. This approach then leads (section 3) to the
fundamental-measure density functional [7] which provides an even simpler analytic form for
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the PY direct correlations, and also yields the so-called ‘bridge functional’ [16]. Furthermore,
the same fundamental-measure density functional as yields the analytic solution of the PY
equation (as described below) also offers (via the approximation of ‘universality of the bridge
functional’ [16]) an accurate solution to the classical inverse scattering problem [17] even for
‘tough’ cases for which the PY and hypernetted-chain closures are considerably less accurate
(section 4). All essential expressions are given (corrected for various typographical errors
which appeared in previous papers) in order to make this paper self-contained regarding
its application to the proposed calculations of the effective interactions, which thus become
straightforward. Finally (section 5), it is indicated that due to more recent developments the
fundamental-measure theory enables the extension of the proposed studies also to more general
soft interactions.

2. Fundamental-measure scaled-field-particle theory: interconnecting the
scaled-particle equation of state and the Percus–Yevick direct correlations

The idea for the fundamental-measure theory came from earlier work on integral equation
theories for liquid structure. Analysis [18] of all major approximate theories of the structure
and thermodynamics of simple liquids [2,19] revealed that, in effect, they interpolate between
the standard ‘ideal-gas’, low-density limit, and a high-density, ‘ideal-liquid’, limit [20], which
corresponds to an Onsager-type lower bound for the potential energy. The ‘ideal-liquid’
limit is characterized by single-particle geometries, and the interpolation to the low-order
diagrammatic expansion is achieved by mathematical constructs playing the role of ‘basis
functions’ [20]. That limit maps universally [20] onto the corresponding limit for hard spheres,
for which it is obtained from the solution of the PY integral equation (i.e. the mean-spherical
approximation for hard spheres) [1,12]. Indeed, the implementation of these general results for
the inhomogeneous hard-sphere fluid mixture kept the geometric features to the forefront, with
the fundamental geometric measures playing the role of basis functions: the basic idea was
to interpolate between the ‘ideal-liquid’, high-density, limit where the pair direct correlation
function is dominated by convolutions of single-particle geometries, i.e. overlap volume and
overlap surface area, and the limit of low density where it is given by the pair-excluded volume,
and by the overlap volume of pair-excluded volumes.

The two leading low-density terms in the diagrammatic expansion for the direct correlation
functions of a general m-component hard-sphere mixture with number density ρi,0 and radius
Ri for species i, are

cij (r = |�rj − �ri |) = fij (r)

[
1 +

∑
k

ρk,0 ◦
i
− − − •

k
− − − ◦

j

]
+ · · · . (1)

In the diagram, a line connecting two particles, say l and k, represents the Mayer function,
flk(|�rl − �rk|), which is equal to −1 if the particles l and k overlap, and zero otherwise, i.e.
representing the pair-excluded volume. A black circle (i.e. ‘field particle’) denotes that one
should integrate over all the positions of that particle. The three-particle diagram corresponds
to the overlap volume of two pair-excluded volumes, i.e. the overlap volume of two spheres of
radii Ri + Rk and Rj + Rk at distance r . Thus, in this notation, the ideal-liquid limit for hard
spheres exhibits a behaviour of the type

cij (r = |�rj − �ri |)ideal liquid ∝ lim
Rk=0

[◦
i
− − − •

k
− − − ◦

j
] = �Vij (r) (2)

with a zero-radius limit for the field particle, corresponding to the overlap volume �Vij (r) of
the two spheres i and j at separation r . The interpolation proposed by the scaled-field-particle
(SFP) theory [15] was achieved by rescaling the radius of the field particle in the diagram,
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Rk → λRk , and by approximating the direct correlation function by the four-parameter {A1,
A2, A3, λ} form:

cSFP
ij (r = |�rj − �ri |) = fij (r)

{
A1 + A2

∑
k

ρk,0 lim
Rk→λRk

[◦
i
− − − •

k
− − − ◦

j
]

+ A3

∑
k

ρk,0 lim
Rk=0

[◦
i
− − − •

k
− − − ◦

j
]

}
. (3)

The corresponding compressibility equation of state as obtained from the standard relation

χi ≡ ∂P

kBT ∂ρi,0
= 1 −

∑
j

ρj,0

∫
cij (r) d3r (4)

exhibits the fundamental-measure form, namely [15]

χi =
3∑

α=0

χ(α)({nα,0})R(α)
i (5)

where the coefficients are functions of only the four fundamental-measure reduced densities:

nα,0 =
∑

j

ρj,0R
(α)
j , for α = 0, 1, 2, 3, (6)

with

R
(α)
i = 1, Ri, Si, Vi for α = 0, 1, 2, 3, respectively, (7)

where Vi = 4πR3
i /3, Si = 4πR2

i , Ri denote the volume, surface area, and radius (i.e. the
fundamental geometric measures) of the particle i. Note, in particular, that n3,0 is the total
packing fraction. This type of equation of state can be represented by an excess free-energy
density (	 is the volume of the system)

Fex

	kBT
= 
({nα,0}) (8)

and pressure

P

kBT
({nα,0}) = −
 +

∑
α

nα,0
∂


∂nα,0
+ n0,0 (9)

which are functions of only the four fundamental-measure reduced densities {nα,0}. The
4-coefficients

χ(α)({nα,0}) = ∂

∂nα,0

P

kBT
({nα,0}) (10)

fully determine the four parameters in the SFP direct correlation function (3):

χ(0) = A1 + A2λ
3n3,0, χ(1) = A2λ

2n2,0,

χ(2) = A2λn1,0, χ(3) = (A2 + A3)n0,0.
(11)

Moreover, geometric analysis of the diagrams in (3) reveals [15] that it can be represented by
the following alternative simpler form:

cSFP
ij (r) = fij (r){χ(3)[�Vij (r)] + χ(2)[�Sij (r)] + χ(1)[�Rij (r)] + χ(0)[�((Ri + Rj) − r)]}

(12)

where [15] �	ij (r), �Sij (r), �Rij (r) are the overlap volume, overlap surface area, and
overlap mean radius for two spheres with separation r .
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Thus, the two SFP theory alternative expressions for the direct correlation functions,
equations (3) and (12) + (11), provide an interconnection between the fundamental-measure
equation of state, given e.g. by the excess free-energy density 
({nα,0}), and the direct
correlation function; but the equation of state is not yet determined and can be determined
from further physical considerations. Indeed, the optimal fundamental-measure equation of
state is that which corresponds to the scaled-particle theory [21]. The excess chemical potential
µex

i = ∂Fex

∂Ni
corresponding to (8) has the form

µex
i = kBT

∑
α

(
∂


∂nα,0

)
R

(α)
i = µ

(0)
i + µ

(1)
i Ri + µ

(2)
i Si + µ

(3)
i Vi (13)

where µ
(α)
i = kBT ∂


∂nα,0
. Scaled-particle theory regards this expression as an interpolation

between the exact limits of small (µ(0)
i = − ln(1 − η)) and large (µ(3)

i = P ) particle size:

µex
i = − ln(1 − η) + µ

(1)
i Ri + µ

(2)
i Si + PVi; (14)

i.e., in view of the expression (9) for the pressure, the excess free-energy density should satisfy
the ‘scaled-particle’ differential equation [7](

P

kBT
=

)
∂


∂n3,0
= −
 +

∑
α

nα,0
∂


∂nα,0
+ n0,0 (15)

in terms of the weighted densities, and the direct correlation function coefficients (10) take the
following form:

χ(α)({nα,0}) = ∂2


∂nα,0 ∂n3,0
. (16)

Finally, since the PY direct correlation functions maintain the analytic form of the first two
diagrams of the exact diagrammatic expansion (1), they must correspond [15] to the SFP
expressions (3) and (12) + (11), while a deeper analysis reveals [15] that the PY coefficients
{χ(α)} satisfy the fundamental-measure scaled-particle theory (16). Thus, the PY hard-
sphere direct correlations are exactly reproduced by the SFP expressions that employ the
PY ‘compressibility’ equation of state [1]:


[{nα,0}] = −n0,0 ln(1 − n3,0) +
n1,0n2,0

1 − n3,0
+

1
3n3

2,0

8π(1 − n3,0)2
(17)

which is equal the result of scaled-particle theory [21] (see also equation (20) below).

3. The fundamental-measure free-energy functional for hard-sphere mixtures as
related to the Percus–Yevick direct correlation functions

The fundamental-measure excess free-energy functional for a general m-component hard-
sphere mixture with density ρi(�r) and radii Ri for species i has the form [7]

Fex[{ρi(�r)}]
kBT

=
∫

d�x 
[{nα(�x)}] (18)

where 
 is a function of only the weighted densities nα(�x):

nα(�x) =
m∑

i=1

∫
ρi(�y)w

(α)
i (�x − �y) d�y. (19)

The weight functions w
(α)
i are characteristic functions for the geometry of the spheres. The

weighted densities nα(�x) are dimensional quantities with dimensions (nα) = (volume)(α−3)/3
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where 0 � α � 3, and provide a functional basis set, {vj }, for expanding the function,

 = ∑

i Ai(n3)vi , of dimension (volume)−1. The coefficients, Ai(n3), as functions of
the dimensionless n3, are determined from the scaled-particle differential equation (15),
−
 +

∑
α nα

∂

∂nα

+ n0 = ∂

∂n3

, and the constants of integration can be fixed by known limits
or desirable properties. In the bulk fluid limit with ρi(�r) = ρi,0 = the average one-particle
density of species i, the corresponding weighted densities were already denoted above by
{nα,0}. The first fundamental-measure free-energy functional [7] was obtained from a basis
set which includes only the simplest positive power combinations of the weighted densities,
{vj } = n0, n1n2, �nV 1 · �nV 2, n

3
2, n2(�nV 2 · �nV 2), and is given by


[{nα}] = −n0 ln(1 − n3) +
n1n2 − �nV 1 · �nV 2

1 − n3
+

1
3n3

2 − n2(�nV 2 · �nV 2)

8π(1 − n3)2
(20)

which in the bulk limit corresponds to the PY ‘compressibility’ result (17) given above.
A unique minimal weight-function set was found by the following convolution

decomposition [7] of the Mayer function for two spheres at distance r , fij (r) = −�(Ri +
Rj − r), which represents a special case of the Gauss–Bonnet theorem [22]:

�(Ri + Rj − r) = w
(0)
i ⊗ w

(3)
j + w

(0)
j ⊗ w

(3)
i + w

(1)
i ⊗ w

(2)
j − �w(V 1)

i ⊗ �w(V 2)
j

+ w
(1)
j ⊗ w

(2)
i − �w(V 1)

j ⊗ �w(V 2)
i (21)

where ⊗ denotes the convolution product:

w
(α)
i ⊗ w

(γ )

j =
∫

w
(α)
i (�x − �ri) · w

(γ )

j (�x − �rj ) d�x (22)

and �(x) is the standard Heaviside unit step function: �(x < 0) = 0, �(x � 0) = 1. The
minimal weight-function space contains three functions: two scalar functions representing the
characteristic functions for the volume (α = 3) and the surface (α = 2) of a sphere, and a
surface vector function (α = V 2):

w
(3)
i (�r) = �(Ri − r), w

(2)
i (�r) = | �∇w

(3)
i (r)| = δ(Ri − r),

�w(V 2)
i (�r) = −�∇w

(3)
i (r) = �r

r
δ(Ri − r).

(23)

The other weight functions (α = 0, 1, V 1) are proportional to these three, and given by

w
(0)
i (�r) = w

(2)
i (�r)

4πR2
i

, w
(1)
i (�r) = w

(2)
i (�r)

4πRi

, �w(V 1)
i (�r) = �w(V 2)

i (�r)
4πRi

. (24)

The scalar weights have the property w̃
(α)
i (k = 0) = R

(α)
i where the R

(α)
i are given by (7) for

α = 0, 1, 2, 3, while the k = 0 Fourier transforms of the vector-type weights (α = V 1, V 2)
vanish. Specifically, the Fourier transforms are given by

w̃
(α)
i (k)

R
(α)
i

= sin(kRi)

kRi

, for α = 0, 1, 2 (25)

w̃
(3)
i (k)

R
(3)
i

= 3
sin(kRi) − kRi cos(kRi)

(kRi)3
(26)

�̃w(V 2)

i (�k) = (−1)1/2�kw̃
(3)
i (k). (27)

The bulk weighted densities are given by (6) for α = 0, 1, 2, 3, while the vector-type weighted
densities vanish in the bulk limit: nα,0 = 0, for α = V 1, V 2.
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The direct correlation functions, which are functional derivatives of Fex[{ρi(�r)}], are given
by convolutions of the geometric characteristic functions. The bulk direct correlation functions
are given by

−cij (r) =
∑
α,γ


αγ

∫
w

(α)
i (�x)w

(γ )

j (�x − �r) d�x (28)

with Fourier transforms

−c̃ij (k) =
∑
α,γ


αγ w̃
(α)
i (�k)w̃

(γ )

j (−�k) (29)

where the coefficients are


αγ =
[

∂2


∂nα ∂nγ

]
{nα}−→{nα,0}

. (30)

Bulk fluid direct correlation functions which are identical to the analytic solution of the PY
integral equation for the hard-sphere mixture are obtained with (e.g.) the functional (20) given
above. Specifically, the exact analytic solution of the PY equation for an arbitrary mixture of
hard spheres [1] can be represented in the following geometric simple form [7]:

−cij (r = |�rj − �ri |) = χ(3)[ω(3)
i ⊗ ω

(3)
j ] + χ(2)[ω(3)

i ⊗ ω
(2)
j + ω

(3)
j ⊗ ω

(2)
i ]

+ χ(1)

[
ω

(3)
i ⊗ ω

(1)
j + ω

(3)
j ⊗ ω

(1)
i +

1

4π
(ω

(2)
i ⊗ ω

(2)
j − �ω(V 2)

j ⊗ �ω(V 2)
i )

]

+ χ(0)[ω(3)
i ⊗ ω

(0)
j + ω

(3)
j ⊗ ω

(0)
i + ω

(1)
i ⊗ ω

(2)
j − �ω(V 1)

i ⊗ �ω(V 2)
j

+ ω
(1)
j ⊗ ω

(2)
i − �ω(V 1)

j ⊗ �ω(V 2)
i ] (31)

where

χ(0) = 1

1 − n3,0
(32)

χ(1) = n2,0

(1 − n3,0)2
(33)

χ(2) = n1,0

(1 − n3,0)2
+

n2
2,0

4π(1 − n3,0)3
(34)

χ(3) = n0,0

(1 − n3,0)2
+

2n1,0n2,0

(1 − n3,0)3
+

n3
2,0

4π(1 − n3,0)4
. (35)

The scalar (dot) product between vectors is implied in the convolution product (22), and its
Fourier transform

˜
w

(α)
i ⊗ w

(γ )

j = w̃
(α)
i (�k) · w̃

(γ )

j (−�k). (36)

The expression (31) for the PY direct correlations is also identical, for each χ(q)-term, to the
SFP expression [15] given by (12). The fundamental-measure theory provided the first unified
derivation of the PY [1, 12] and scaled-particle-theory [21] results for hard spheres, giving a
geometric meaning to the PY direct correlation functions, with a particularly simple analytic
form for the general m-component mixture.
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4. The bridge functional in the test-particle limit and the inverse problem for liquid
structure

Given the direct correlation functions from the fundamental-measure functional or from the
SFP theory, and in particular those corresponding to the PY result, the structure factors are
obtained easily. The structure factors

Sij (k) = δij + (ρi,0ρi,0)
1/2h̃ij (k), (37)

where

hij (r) = gij (r) − 1 (38)

denote the total pair correlation functions, are related to the Fourier transforms of the direct
correlation functions, c̃ij (k), by the following Ornstein–Zernike matrix equation:

S = (I − C)−1. (39)

The elements of the m × m matrices (for an m-component system) are: Sij = Sij (k),
Cij = (ρi,0ρj,0)

1/2c̃ij (k), and Iij = δij (I is the unit matrix).
The ‘effective’ potential φeff (r) for the same-species i–i interparticle interaction is

obtained by reinterpreting Sii(k) as the structure factor for an ‘effective’ single-component
system of particles at number density ρeff = ρi,0, Seff (k) = Sii(k). From Seff (k) we obtain
the ‘effective’ pair correlation function heff (r) = geff (r) − 1 from

Seff (k) = 1 + ρeff h̃eff (k). (40)

Using the single-component Ornstein–Zernike relation

Seff (k) = 1

1 − ρeff c̃eff (k)
, (41)

the ‘effective’ pair direct correlation function ceff (r) is obtained. The ‘effective’ potential can
then be obtained from the following exact relation [23]:

φeff (r)

kBT
= geff (r) − 1 − ceff (r) − ln geff (r) − beff (r), (42)

where b(r) is the so-called ‘bridge function’. When the bridge function is ignored, b(r) = 0,
we have the hypernetted-chain (HNC) approximation. With an approximate bridge function
this was termed [23] the ‘modified hypernetted-chain (MHNC) approximation’.

One possibility for obtaining an approximation for the generally unknown exact bridge
function is from density functional theory. The starting points for the application of the density
functional method for both uniform and non-uniform fluids are the density-profile equations,
i.e. the Euler–Lagrange equations for minimizing the grand potential [24]. The equations
determining the density profile ρ(�r) for the fluid subject to an external potential u(�r) can be
written in the MHNC form [23,25], involving the bridge functional which is related to the sum
of all terms beyond second order in the functional Taylor expansion of the excess free energy
Fex[ρ(�r)] around some reference density. For a fluid in contact with a reservoir bulk fluid, of
average density ρ0, the bridge functional is given by [16, 25],

B[ρ0; ρ(�r); �r] = µex[ρ(�r); �r]

kBT
− µex[ρ0]

kBT

+ ρ0

∫
d �r ′ c(2,FD)[ρ0; (|�r − �r ′|)](ρ(�r ′)/ρ0 − 1). (43)
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Here c(2,FD)[ρ0; (|�r − �r ′|)] is the bulk limit of the direct correlation function given by the
second functional derivative c(2,FD)(�r1, �r2) = − δ2Fex [ρ(�r)]

kBT δρ(�r1) δρ(�r2)
, µex[ρ(�r); �r] = − δFex [ρ(�r)]

δρ(�r) is
the excess-chemical-potential functional, and µex(ρ0) is its bulk limit. In the special case
where the external potential is generated by a test particle at the origin of coordinates [26],
u(�r) = φ(r). The resulting density profile then corresponds to the bulk pair correlation
function, g(r) = ρ(r)

ρ0
, and the bridge function, b(r), is derived from the bridge functional

B[ρ0; ρ(�r); �r] by using ρ(�r) = ρ0g(r):

b(r) = B[ρ0; ρ0g(r); r]. (44)

This method can be used also for potentials for which the free-energy functional is not
available. The assumption that one makes leading to the ‘universality’ hypothesis is that the
bridge functional is (approximately) independent of the precise form of the pair interaction;
hence it is regarded as being a universal quantity that can be obtained from that for any
appropriate reference potential. When the potential and the reference potential are different,
it is possible to optimize the reference-system parameters by a free-energy minimization that
leads to an equation of the form [16, 25]∫

d�r[g(�r) − greference(�r)]δb(�r) = 0. (45)

The fundamental-measure theory is especially successful for hard spheres, and it can be
expected to give a reasonably accurate approximation for the hard-sphere bridge functional.
The approximation that the corresponding bridge functional is ‘universal’ makes the above
method applicable to any physically reasonable pair potential.

Indeed, with the fundamental-measure functional for hard spheres it was possible to extend
the approximation of ‘universality of the bridge functions’ [23] to that of ‘universality of the
bridge functional’ [16]:

b(r) = BHS
FMT [ρ0; ρ0g(r); r; R]. (46)

The fundamental-measure bridge functional for the hard spheres, BHS
FMT [ρ0; ρ0g(r); r; R],

depends parametrically on the hard-sphere radius R. The optimal value, R = Ropt , is obtained
from the following equation [16]:∫

d3r [g(r) − gHS
PY (r)]

∂BHS
FMT [ρ0; ρ0g(r); r; R]

∂R
= 0, for R = Ropt , (47)

which is similar to (45) and to that obtained [27] for the MHNC approximation with ‘universal’
hard-sphere bridge functions [23]. Note, however, that in accordance with the build-up of the
fundamental-measure functional, we must use in (47) the hard-sphere pair function gHS

PY (r)

corresponding to the result of PY approximation [12].
By considering simulation data for given pair potentials it was found that the resulting

bridge function thus obtained from the hard-sphere functional,

b(r) = BHS
FMT [ρ0; ρ0g(r); r; Ropt ], (48)

is very accurate for both the direct and inverse problems, for both single-component fluids and
(with the appropriate corresponding expressions) for mixtures [16,17,25,28]. The penetrable-
sphere system is a severe test case, since it is a priori unclear whether the universality extends
to systems without some sort of effective hard core. It was found, however, that hard-sphere-
type bridge functionals are applicable also for bounded potentials with high penetrability [28].
It should be emphasized that:

(1) The evaluation of b(r) = BHS
FMT [ρ0; ρ0g(r); r; Ropt ] requires only several one-

dimensional integrations, so considerable improvements over the methods used in [11]
are obtained with a marginal computational cost.
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(2) As discussed in [17], since this bridge function is given by a functional of the input pair
correlation function, no iteration procedure is needed.

(3) The inverted potentials obtained from recent modifications [29, 30] of the fundamental-
measure functional are almost identical to those obtained from the original functional
[7, 16] using the expressions given in the previous section.

Thus, finally, given the pair correlation function (e.g. Seff (k) or geff (r)) of a one-component
bulk fluid of average number density ρ0 and temperature T , and interacting via an unknown pair
potential φeff (r), an approximate solution of the inverse problem of obtaining that potential
is given by

φeff (r)

kBT
= geff (r) − 1 − ceff (r) − ln geff (r) − BHS

FMT [ρ0; ρ0geff (r); r; Ropt ]. (49)

In a benchmark test [17] for the Lennard-Jones system near the triple point, it was found
comparable to about ten simulations in the iterative predictor–corrector scheme [14] for the
inverse problem, a significant improvement over the PY or HNC approximations.

5. Conclusions

It appears that the fundamental-measure functional can provide a useful tool for investigating
the structure and effective interactions in multi-component hard-sphere liquids. It is
particularly well suited for the study of packing aspects of melts that form glasses or quasi-
crystals as initiated in [11], yet it enables one to study, in addition to the three-component
case, also the more important and physically relevant situations involving more complicated
mixtures. Moreover, the fundamental-measure functional can be applied for the same purpose
also within the powerful framework of density functional theory, as already demonstrated by
studies of the depletion interactions in binary mixtures [8, 9].

Finally, it should be pointed out that the methods offered here for hard-sphere interactions
can be extended and applied also to more general soft interactions. Several recent
analyses [29, 30] revealed the important role played by the dimensional crossover properties
of the fundamental-measure functionals, and in particular their zero-dimensional (0D) limit
corresponding to a cavity with at most one particle. It was shown [30] that the correct 0D
crossover can be systematically imposed, and the exact 0D limit (of the D-dimensional case)
plays the role of a generating functional for D-dimensional hard-sphere fundamental-measure
functionals. Using these new insights, fundamental-measure functionals were derived for
penetrable spheres [31] and also for general soft interactions [32], with particular extensions
to star polymer solutions [33] and to various models for colloid–polymer mixtures [34]. The
resulting direct correlation functions when inserted into the Ornstein–Zernike relation feature
generally accurate radial pair distribution functions which, however, usually do not satisfy
the ‘core condition’ at short distances (the result corresponding to the PY integral equation
approximation is very special). However, this can be easily remedied by considering the
test-particle method (see, e.g., [33] for a discussion of that point). Thus, the more recent
developments of the fundamental-measure theory enable one to extend the studies proposed
above for hard spheres also to the more general soft interactions.
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[29] Rosenfeld Y, Schmidt M, Löwen H and Tarazona P 1996 J. Phys.: Condens. Matter 8 L577
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